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‡ Dipartimento di Fisica Teorica dell’Università di Torino, via P Giuria 1, I-10125 Torino, Italy
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Abstract. We point out some problems with the previously proposed phase diagram of theZ6
spin models. Consideration of the diagram near to the decoupling surface using both exact and
approximate arguments suggests a modification which remedies these deficiencies. With the aid
of a new parametrization of the phase space, we study the models numerically, with results which
support our conjectures.

The discreteZ6 spin models describe the behaviour of a collection of spinsSi = exp(iθi),
where theθi are integer multiples ofπ/3. These spins live on a square two-dimensional lattice
and interact according to a reduced Hamiltonian of the form

H ≡ 1

kBT
H =

∑
〈ij〉

V (θi − θj ) (1)

the sum running over nearest-neighbour pairs of sites〈ij〉. ImposingV (θ) = V (−θ), a
particular system is characterized by the three numbersVr = V (πr/3) − V (0), r = 1, 2, 3.
A duality transformation maps the space of such models to itself [1–4]: with the couplings
parametrized by variablesxr = exp(−Vr), a sum over theθi is equivalent to one over dual
variablesθ̃ı̃ , with the triplet of couplings{xr} replaced by the dual set{x̃r}:

x̃1 = (1 +x1− x2 − x3)/1

x̃2 = (1− x1− x2 + x3)/1

x̃3 = (1− 2x1 + 2x2 − x3)/1

(2)

where1 = 1 + 2x1 + 2x2 + x3. The transformation leaves invariant points on the line

(x1, x2, x3) = (t, β − αt, α − 2βt) (3)

whereα = 3 − √6 andβ = √6 − 2. This self-dual line intersects the line of six-state
Potts models at the pointx1 = x2 = x3 = (

√
6− 1)/5, denotedP below. There is also a

distinguished surface on which the models decouple into independent three-state Potts and
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Ising models [2]. This is revealed on writing each spinSi as a product of aZ2 and aZ3 valued
variable:

Si = eiθi = 6iσi 6i = 1, e±2π i/3, σ = ±1. (4)

The pairwise interaction energy can then be written as

V (θ) = J1[1− cos(θ)] + J2[1− cos(2θ)] + J3[1− cos(3θ)]

= J1[1− 1
2(S + S−1)] + J2[1− 1

2(6 +6−1)] + J3[1− 1
2(σ + σ−1)]

= 3J1[1− δσiσj δ6i6j ] + 3
2(J2 − J1)[1− δ6i6j ] + (2J3− J1)[1− δσiσj ] (5)

whereθ = θi − θj , S = Si/Sj ,6 = 6i/6j , σ = σi/σj , and

J1 = 1

3
ln

x1

x2x3
J2 = 1

3
ln

x3

x1x2
J3 = 1

6
ln

x2
2

x2
1x3

. (6)

The spins6i andσi decouple on the surfaceJ1 = 0,x1 = x2x3, on which3
2J2 is the three-state

Potts coupling, and 2J3 the Ising coupling.
The more general phase structure of these models has been studied by various authors

over the years (see, for example, [2–5]). The question is an interesting exercise in its own
right, and is also of wider relevance—to, for example, the effect of hexagonal symmetry-
breaking on the isotropic planar model [2, 6], the behaviour of the cubic model [2, 7], and
the spectra of Heisenberg antiferromagnetic spin chains [8]. An initial phase diagram was
suggested by Domany and Riedel in [2], with the three-dimensional thermodynamic phase
space partitioned into four domains, one disordered and the others exhibitingZ2, Z3 andZ6

ordering. The existence of an additional massless phase was then demonstrated, first [9] along
the Villain [10] line, and then [3] throughout a whole three-dimensional region. This phase
was incorporated into the Domany–Riedel diagram by Alcaraz and Koberle in [4], its endpoint
on the self-dual line later being identified with a particular integrable pointC on the phase
diagram [11] (further support for such an identification can be found in [12,13]).

However, there are reasons to believe that the story is not yet complete. We give two
examples.

(i) In the diagrams of [2, 4], the pointP touches surfaces of transition from the disordered
phase into regions ofZ2 andZ3 order. Such transitions are expected to be of second order,
and so the correlation length on these surfaces should be infinite. This contradicts the
known behaviour of the six-state Potts model atP , where the correlation length remains
finite [14], albeit large [15].

(ii) On the decoupling surfaceJ1 = 0, there is a line of Ising transitions,J3 = 1
2 ln[1 +

√
2],

and a line of three-state Potts transitions,J2 = 2
3 ln[1 +

√
3]. These lines cross at a

renormalization group fixed pointD, the product of a critical Ising model and a critical
three-state Potts model. ThreeZ6-invariant operators at this point are the Ising and three-
state Potts energy densitiesε andE , and their productεE . Since their scaling dimensions
are 1, 4

5 and 9
5 respectively, all are relevant and the fixed point is triply unstable. This

corrects the approximate (Migdal) renormalization group result used in [2], which gave
D as being doubly unstable.

We can take this second point a little further, using continuum field theory arguments
which are valid in the scaling region around the pointD. The fixed point itself is described
by a product ofc = 1

2 andc = 4
5 conformal field theories, and nearby points by perturbations

of this productc = 13
10 conformal field theory by combinations of the continuum operatorsε,

E andεE . The first two are anti-self-dual under (2), while the third is self-dual and moves
the model away fromD along the line (3). Minimal models coupled by local operators have
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received a fair amount of attention (see, for example, [16]) but this particular instance does not
seem to have been studied in any detail. However, Zamolodchikov’s counting argument [17]
can be used to show that theεE perturbation preserves at the very least conserved charges of
spins±3 and±5. The perturbed (continuum) theory should therefore be integrable [18] and
we can hope to obtain information about the scaling region of the self-dual line near toD via the
thermodynamic Bethe ansatz (TBA) technique [19]. This method expresses the finite-volume
‘effective central charge’c(r), r = mR, of a model with bulk length scale 1/m confined to a
circle of circumferenceR in terms of the solutionsεa(θ) to a set of coupled integral equations.
A candidate system for this case has already been identified: in [20] it was observed that the
following TBA system for the functionsε1, . . . , ε7:

εa(θ) = δa1r coshθ − 1

2π

7∑
b=1

l
[E7]
ab φ ∗ ln(1 + e−εb )(θ)

c(r) = 3

π2

∫ ∞
−∞

dθ r coshθ ln(1 + e−ε1(θ))

(7)

predicts an ultraviolet central charge of13
10, and a small-r behaviour ofc(r) compatible with an

expansion in even powers of a couplingλ to an operator of dimension95. (Here∗ denotes the

convolution,f ∗g(θ) = ∫∞−∞ dθ ′ f (θ − θ ′)g(θ ′), φ(θ) = 1/ coshθ , andl[E7]
ab is the incidence

matrix of theE7 Dynkin diagram, with 1 labelling the node at the end of the middle-length
arm.) This is the behaviour expected of the perturbation of the product Ising and three-state
Potts conformal field theory by itsεE operator. (On dimensional grounds,m will be related
to λ asm ∝ λ5, but we do not attempt to find the constant of proportionality here.) Assuming
that the TBA is correct, it can be used to extract a non-trivial prediction about the vacuum
structure of the perturbed model, using arguments described in section 4.3 of [13]. The system
(7) implies the following asymptotic for the ground state energyE(m,R):

E(m,R) = − π

6R
c(mR) ∼ −

√
6m

π
K1(mR) (8)

whereK1 is the modified Bessel function of order one and the prefactor
√

6 can be interpreted
as the Perron–Frobenius eigenvalue of the incidence matrix for single kinks interpolating
degenerate vacua of the perturbed theory [13]. These vacua must support a representation of
the globalZ6 symmetry, and we find that the simplest incidence matrices compatible with both
this fact and the eigenvalue implied by (8) are the following:

I a =



0 1 1 1 1 1 1
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0


I b =


0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

 . (9)

The first is consistent with the coexistence of disordered andZ6 ordered phases, the second
with coexistence ofZ2 andZ3 ordered phases. This leads us to the first part of our proposal for
the resolution of points (i) and (ii) above: we suggest that the entire segment of the self-dual
line fromD to C, which includes the six-state Potts transition pointP , lies on a surface of
first-order transitions separating disordered and fully-ordered regions, and in the scaling region
near toD is described by an integrable scattering theory with kink incidence matrixI a. (In
the massive scaling region near toC, the vacuum structure comes as theN = 6 case of the
results of [13], and is also given byI a.) It is natural to suppose that the matrixI b describes



L154 Letter to the Editor

z

z
z

z

z
z

z
z

2

3

6

1

1

2

3

6

Figure 1. Schematic pictures of slices through the phase diagram just below and just above the
decoupling surface.

the vacuum structure on the opposite side of the pointD, and support for this idea comes from
the following argument.

Consider the behaviour of the model near to the decoupling surfaceJ1 = 0, taking either
J2 � 1 orJ3 � 1. In the first case, the effect will be to freeze out the three-state Potts spins
6i , and all termsδ6i6j can be approximated by 1 in the final line of (5). The result is an
effective interaction for the remaining unfrozen spins, equal to 2(J3 + J1)[1− δσiσj ]. Thus the
only effect of a non-zeroJ1 in this ‘6-frozen’ region is to replaceJ3 with J3 + J1. The line of
Ising transitions on the decoupling surface was atJ3 = J c3 = 1

2 ln[1 +
√

2]; we now conclude
that a small non-zeroJ1 in the regionJ2� 1 simply shifts this line toJ3 = J c3 −J1. A similar
argument shows that the line of three-state Potts transitions, situated atJ2 = J c2 = 2

3 ln[1+
√

3]
on the decoupling surface, is shifted toJ2 = J c2 − J1 in the regionJ3 � 1 where theσ spins
are frozen. Finally, duality can be used to see that in the opposite regimesJ2� 1 andJ3� 1,
the critical lines move in the opposite senses whenJ1 shifts away from zero. This line of
argument has nothing to say directly about the central region where the Ising and three-state
Potts spins are both near their critical points, but the simplest hypothesis, also consistent with
the continuum results of the last paragraph, is to continue the lines in from the asymptotic
regions as in figure 1.

Much of our numerical work has been devoted to the confirmation of this picture. Before
we describe this, we pause to introduce a third set of coordinates on the thermodynamic phase
space. First, notice that the parameterK defined by

K(x1, x2, x3) = (x1− x2x3)/1 (10)

is mapped into itself by duality:K̃ = K. Therefore, surfaces of constantK in phase space
are mapped into themselves by duality;K = 0 is the decoupling surface. Points withK > 0
lie ‘below’ this surface, on the same side as the six-state Potts pointP . It is easy to check that
the two parameters

y2 = ln
1 + 2x2√
3− 6K

y3 = ln
1 +x3√
2− 4K

(11)

have the simple duality transformation rule

ỹ2 = −y2 ỹ3 = −y3. (12)

It is convenient to use(K, y2, y3) as coordinates in phase space: on any fixed-K surface the
point (K, 0, 0) is the self-dual point and duality is just the reflection in this point. The origin
(0, 0, 0) is the fixed pointD on the decoupling surface, and the six-state Potts transition point
P is at(KP , 0, 0) with KP = (

√
6− 1)2/25≈ 0.084. On the decoupling surface,y2 andy3

are functions of the Ising and Potts couplings, respectively.
A cluster algorithm appears to be the ideal choice to simulate the relevant regions of

the phase diagram, since it is reasonable to expect large correlation lengths even when the
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transitions are only first-order. Since cluster algorithms are especially simple to implement
for Z2 andZ3 models, we exploited the possibility of writing the Hamiltonian as in (5): the
algorithm we used performs alternate cluster updates of theσi and6i variables, where those
which are not being updated provide effective, site-dependent couplings for the others. For
example, suppose we are updating theZ2 variables: the effective coupling to be used on the
link 〈ij〉 is thenJ3 +J1

(
6 +6−1

)
/2 with6 = 6i/6j , while when updating theZ3 variables

the effective coupling isJ2 +J1σ with σ = σi/σj . Similar algorithms were introduced in [21]
for the Ashkin–Teller model, defined as two coupled Ising models.

The fact that the effective couplings are site-dependent does not pose a problem for
the cluster updates. However, the effectiveZ2 andZ3 couplings can become negative, i.e.
antiferromagnetic. This will happen for the effectiveZ2 coupling wheneverJ3 + J1 < 0 or
J3 − J1/2 < 0, and for theZ3 coupling wheneverJ2 + J1 < 0 or J2 − J1 < 0. Negative
couplings on some links can in turn lead to frustrations, which in principle can make the cluster
algorithm highly ineffective. However, it is easy to convince oneself that theZ3 model is never
actually frustrated: for every configuration of theZ2 spins there exists a configuration of the
Z3 ones such that all the links are satisfied. Therefore the possibility of frustrations exists only
for J1 < −J3 or J1 > 2J3. These relations are never satisfied in the regions we considered.

We explored several fixed-K surfaces and mapped the various phases and their boundaries
using the Binder cumulants method [22]. In our case, we define two cumulants, one for each
order parameter:

Qσ = 3

2
− 1

2

〈m4
σ 〉

〈m2
σ 〉2

Q6 = 2− 〈m
4
6〉

〈m2
6〉2

(13)

wheremσ andm6 are theZ2 andZ3 magnetizations per site. For each surface we measured
theZ2 andZ3 Binder cumulants on a grid of points around the self-dual point(K, 0, 0) for two
different lattice sizesL1×L1 andL2×L2. For every fixed value ofy2 we estimated the value
of y3 where each Binder cumulant remains constant when the lattice size is increased, i.e.
the transition point. This allows us to determine a set of points belonging to the transition
lines for theZ2 and Z3 variables. These are the points plotted in figures 2–4 for the
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Figure 2. Phase diagram on theK = 0.06 surface. Phases are labelled according to the nature of
their ordering. Binder cumulants for lattice sizesL1 = 15 andL2 = 30 were used.
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Figure 4. Same as figure 2 forK = −0.08. The lattice sizes used here wereL1 = 45 andL2 = 60.

K = 0.06, 0.04,−0.08 surfaces, respectively. The consistency of the procedure was checked
by repeating it with the roles ofy2 andy3 inverted. Finite-size effects are signaled by violations
of the duality symmetry, that is, in our coordinates, symmetry under reflection in the origin.
Small violations are visible in our figures; we checked that they become smaller when the
lattice sizes are increased. These effects turned out to be much larger in theK < 0 region. In
fact we observed that to control them satisfactorily in theK > 0 region lattice sizes as small
asL1 = 15,L2 = 30 sufficed, while forK < 0 we had to useL1 = 45,L2 = 60.

The numerical results confirm the qualitative picture shown in figure 1, and our claim that
the decoupling pointD on the self-dual line marks a change from the coexistence of disorder
andZ6 order to the coexistence ofZ2 andZ3 order. The reduced length of the first-order
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segment atK = 0.04 is consistent with scaling predictions, though we are not close enough to
the pointD to see a complete collapse of data. In conclusion, we have proposed a significant
modification to the previously accepted phase diagram of theZ6 spin models, and this has been
supported by a detailed numerical study.

We would like to thank John Cardy, Michele Caselle, Eytan Domany, Ferdinando Gliozzi,
Martin Hasenbusch, Klaus Pinn and Jean-Bernard Zuber for useful conversations. This work
was supported in part by a TMR grant of the European Commission, contract reference
ERBFMRXCT960012. PED thanks the UK EPSRC for an Advanced Fellowship and RT
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