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Abstract. We point out some problems with the previously proposed phase diagram 4§ the

spin models. Consideration of the diagram near to the decoupling surface using both exact and
approximate arguments suggests a modification which remedies these deficiencies. With the aid
of a new parametrization of the phase space, we study the models numerically, with results which
support our conjectures.

The discreteZg spin models describe the behaviour of a collection of sfins exp(i6;),
where the); are integer multiples of /3. These spins live on a square two-dimensional lattice
and interact according to a reduced Hamiltonian of the form

1
H kBTH %; V(6 —6)) (1)
the sum running over nearest-neighbour pairs of diigs ImposingV (6) = V(-0), a
particular system is characterized by the three numbees V (zr/3) — V(0),r = 1,2, 3.

A duality transformation maps the space of such models to itself [1-4]: with the couplings
parametrized by variables = exp(—V,), a sum over the; is equivalent to one over dual
variablesd;, with the triplet of couplinggx, } replaced by the dual sé, }:

X1 =1 +x1—x2—x3)/A
Yo =(1—x1—x2+x3)/A 2)
X3=(1—2x1+2x, —x3)/A

whereA = 1+ 2x; + 2x;, + x3. The transformation leaves invariant points on the line
(1, x2, x3) = (t, B — at, a — 2p1) )

wherea = 3 — /6 andg = /6 — 2. This self-dual line intersects the line of six-state
Potts models at the poiny = x, = x3 = (v/6 — 1)/5, denotedP below. There is also a
distinguished surface on which the models decouple into independent three-state Potts and
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Ising models [2]. This is revealed on writing each sfiras a product of &, and aZ3 valued
variable:

S, = €% = %0 T =1e28 5=+l (4)
The pairwise interaction energy can then be written as
V(0) = J1[1 — cog0)] + Jo[1 — cog20)] + J3[1 — coq36)]
= Ji[1 = 3+ 85D+ L[l = 3(E+EH]+ Sl - 30 +0 )]
= B/[L = 850,085,351+ 5 (J2 = JD[L = 85,3,]+ (2J3 = JD[L = 85,0, (5)
wheref =6, —6;,S = S§;/S;, L =%;/%;,0 =0;/0j, and

1 X1 1 X3 1 x%
Ji==In— Jo=—=In— J3=—=In ==, 6
1=3 X2X3 273 X1X2 "6 xfxs ©)

The spinsX; ando; decouple on the surfack = 0, x; = x2x3, ONn Whicthg is the three-state
Potts coupling, and.5 the Ising coupling.

The more general phase structure of these models has been studied by various authors
over the years (see, for example, [2-5]). The question is an interesting exercise in its own
right, and is also of wider relevance—to, for example, the effect of hexagonal symmetry-
breaking on the isotropic planar model [2, 6], the behaviour of the cubic model [2, 7], and
the spectra of Heisenberg antiferromagnetic spin chains [8]. An initial phase diagram was
suggested by Domany and Riedel in [2], with the three-dimensional thermodynamic phase
space partitioned into four domains, one disordered and the others exhibitilg andZg
ordering. The existence of an additional massless phase was then demonstrated, first [9] along
the Villain [10] line, and then [3] throughout a whole three-dimensional region. This phase
was incorporated into the Domany—Riedel diagram by Alcaraz and Koberle in [4], its endpoint
on the self-dual line later being identified with a particular integrable p@ioin the phase
diagram [11] (further support for such an identification can be found in [12, 13]).

However, there are reasons to believe that the story is not yet complete. We give two
examples.

(i) In the diagrams of [2, 4], the poin® touches surfaces of transition from the disordered
phase into regions &, andZs order. Such transitions are expected to be of second order,
and so the correlation length on these surfaces should be infinite. This contradicts the
known behaviour of the six-state Potts modePatwhere the correlation length remains
finite [14], albeit large [15].

(ii) On the decoupling surfacé = 0, there is a line of Ising transitiong; = % In[1 + /2],
and a line of three-state Potts transitiods, = %In[l +4/3]. These lines cross at a
renormalization group fixed poir, the product of a critical Ising model and a critical
three-state Potts model. Thrég-invariant operators at this point are the Ising and three-
state Potts energy densitieand&, and their product€. Since their scaling dimensions
are 1,%‘ andg respectively, all are relevant and the fixed point is triply unstable. This
corrects the approximate (Migdal) renormalization group result used in [2], which gave
D as being doubly unstable.

We can take this second point a little further, using continuum field theory arguments
which are valid in the scaling region around the paint The fixed point itself is described
by a product ot = % andc = ‘5‘ conformal field theories, and nearby points by perturbations
of this producic = i—g conformal field theory by combinations of the continuum operators
& ande&. The first two are anti-self-dual under (2), while the third is self-dual and moves
the model away fronD along the line (3). Minimal models coupled by local operators have
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received a fair amount of attention (see, for example, [16]) but this particular instance does not
seem to have been studied in any detail. However, Zamolodchikov’s counting argument [17]
can be used to show that th& perturbation preserves at the very least conserved charges of
spins£3 and+5. The perturbed (continuum) theory should therefore be integrable [18] and
we can hope to obtain information about the scaling region of the self-dual line neaiadhe
thermodynamic Bethe ansatz (TBA) technique [19]. This method expresses the finite-volume
‘effective central charge!(r), r = m R, of a model with bulk length scale/# confined to a
circle of circumference in terms of the solutions, (9) to a set of coupled integral equations.
A candidate system for this case has already been identified: in [20] it was observed that the
following TBA system for the functions,, ..., &7:
7
£4(0) = 8,11 cOshh — 1 Y g xIn@ + e ) (©0)
2 = @)

3 o0
c(r) = — / do r coshy In(1 + e 1)

predicts an ultraviolet central charge{%t and a small behaviour of:(r) compatible with an
expansion in even powers of a couplingo an operator of dimensio%l (Herex denotes the
convolution, fxg () = f_°°oc do’ (0 —0)g(®"), (@) = 1/ coshy, andll[l‘,?] is the incidence
matrix of the E7 Dynkin diagram, with 1 labelling the node at the end of the middle-length
arm.) This is the behaviour expected of the perturbation of the product Ising and three-state
Potts conformal field theory by i€ operator. (On dimensional grounds,will be related

to » asm o A°, but we do not attempt to find the constant of proportionality here.) Assuming
that the TBA is correct, it can be used to extract a non-trivial prediction about the vacuum
structure of the perturbed model, using arguments described in section 4.3 of [13]. The system
(7) implies the following asymptotic for the ground state eneigy:, R):

Vém

E(m, R) = ——=c(mR) ~ —Y2 K1(mR) ®)

6R
whereKk is the modified Bessel function of order one and the prefag®can be interpreted
as the Perron—Frobenius eigenvalue of the incidence matrix for single kinks interpolating
degenerate vacua of the perturbed theory [13]. These vacua must support a representation of
the globalZg symmetry, and we find that the simplest incidence matrices compatible with both
this fact and the eigenvalue implied by (8) are the following:

01 1111 o

14 = )

PR RPRRRR
cNoNoNoNele!
leNoNoNeoNeNe!
oOooooo
lcNoNoNeoNeNe!
lcNoNoNeNeNe!
OO0 o000

<

I
PR R OO
PR R OO
[eNoNoNEW,
[cNoNaN=W,
QoOoOoORrRE

The first is consistent with the coexistence of disorderedZandrdered phases, the second
with coexistence of.; andZz ordered phases. This leads us to the first part of our proposal for
the resolution of points (i) and (ii) above: we suggest that the entire segment of the self-dual
line from D to C, which includes the six-state Potts transition pamtlies on a surface of
first-order transitions separating disordered and fully-ordered regions, and in the scaling region
near toD is described by an integrable scattering theory with kink incidence matriXin

the massive scaling region neardo the vacuum structure comes as ftie= 6 case of the
results of [13], and is also given kif.) It is natural to suppose that the matiik describes
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Z, 3 i z,

Figure 1. Schematic pictures of slices through the phase diagram just below and just above the
decoupling surface.

the vacuum structure on the opposite side of the pbirand support for this idea comes from
the following argument.

Consider the behaviour of the model near to the decoupling surfae€0, taking either
Jo > 1orJs; > 1. Inthe first case, the effect will be to freeze out the three-state Potts spins
%;, and all termsjy, 5, can be approximated by 1 in the final line of (5). The result is an
effective interaction for the remaining unfrozen spins, equal@ 2 J1)[1 — 6,,5,]. Thus the
only effect of a non-zerd; in this ‘=-frozen’ region is to replacés with Js + J;. The line of
Ising transitions on the decoupling surface wagzat J§ = % In[1 + +/2]; we now conclude
that a small non-zerg, in the regionJ, > 1 simply shifts this line ta/s = J5 — J1. A similar
argument shows that the line of three-state Potts transitions, situateetal; = % In[1++/3]
on the decoupling surface, is shiftedip= J5 — Ji in the region/; > 1 where ther spins
are frozen. Finally, duality can be used to see that in the opposite redinesl andJ; « 1,
the critical lines move in the opposite senses whigishifts away from zero. This line of
argument has nothing to say directly about the central region where the Ising and three-state
Potts spins are both near their critical points, but the simplest hypothesis, also consistent with
the continuum results of the last paragraph, is to continue the lines in from the asymptotic
regions as in figure 1.

Much of our numerical work has been devoted to the confirmation of this picture. Before
we describe this, we pause to introduce a third set of coordinates on the thermodynamic phase
space. First, notice that the paramekedefined by

K (x1, x2, x3) = (x1 — x2x3)/ A (10)

is mapped into itself by dualityX = K. Therefore, surfaces of constakitin phase space
are mapped into themselves by dualiky;= 0 is the decoupling surface. Points wikth> 0
lie ‘below’ this surface, on the same side as the six-state Potts poiltis easy to check that
the two parameters

in 2 =t (11)
=l smek T Vz-ak
have the simple duality transformation rule
Y2 =—Y2 y3=—)y3. (12)

It is convenient to usék, y,, y3) as coordinates in phase space: on any fikeddrface the
point (K, 0, 0) is the self-dual point and duality is just the reflection in this point. The origin
(0, 0, 0) is the fixed pointD on the decoupling surface, and the six-state Potts transition point
Pis at(Kp,0,0) with Kp = (v/6 — 1)2/25 ~ 0.084. On the decoupling surface, and ys
are functions of the Ising and Potts couplings, respectively.

A cluster algorithm appears to be the ideal choice to simulate the relevant regions of
the phase diagram, since it is reasonable to expect large correlation lengths even when the
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transitions are only first-order. Since cluster algorithms are especially simple to implement
for Z, andZ3z models, we exploited the possibility of writing the Hamiltonian as in (5): the
algorithm we used performs alternate cluster updates of;thedx; variables, where those
which are not being updated provide effective, site-dependent couplings for the others. For
example, suppose we are updating #evariables: the effective coupling to be used on the
link (ij) isthenJs+J1 ( + =71) /2 with £ = %;/E;, while when updating th&; variables

the effective coupling id, + J1o with o = o;/0;. Similar algorithms were introduced in [21]

for the Ashkin—Teller model, defined as two coupled Ising models.

The fact that the effective couplings are site-dependent does not pose a problem for
the cluster updates. However, the effectéeandZs couplings can become negative, i.e.
antiferromagnetic. This will happen for the effecti#e coupling whenevers; + J; < 0 or
J3 — J1/2 < 0, and for theZ; coupling whenever, + J; < 0 or J, — J; < 0. Negative
couplings on some links can in turn lead to frustrations, which in principle can make the cluster
algorithm highly ineffective. However, itis easy to convince oneself thaZghraodel is never
actually frustrated: for every configuration of tle spins there exists a configuration of the
Z3 ones such that all the links are satisfied. Therefore the possibility of frustrations exists only
for J; < —Jszor J; > 2J3. These relations are never satisfied in the regions we considered.

We explored several fixe®- surfaces and mapped the various phases and their boundaries
using the Binder cumulants method [22]. In our case, we define two cumulants, one for each
order parameter:

3 1 (mg) (m)

C-=272my 22T Lay
wherem, andmy are theZ, andZ; magnetizations per site. For each surface we measured
theZ, andZs Binder cumulants on a grid of points around the self-dual p@nto, 0) for two
different lattice sized.1 x L1 andL,x L,. For every fixed value of, we estimated the value
of y3 where each Binder cumulant remains constant when the lattice size is increased, i.e.
the transition point. This allows us to determine a set of points belonging to the transition
lines for theZ, and Z3 variables. These are the points plotted in figures 2—4 for the

(13)

0.06

0.04f Z3 . 1

0.02r s 1

Y3
o

-0.02 - 2 1

-0.06 . . . . . . ,
-0.04 -0.03 -0.02 -0.01 0 001 0.02 003 0.04

Y2

Figure 2. Phase diagram on thi€ = 0.06 surface. Phases are labelled according to the nature of
their ordering. Binder cumulants for lattice sizeg= 15 andL, = 30 were used.
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Figure 3. Same as figure 2 fak = 0.04.
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Figure 4. Same as figure 2 fak = —0.08. The lattice sizes used here wére= 45 andL, = 60.

K = 0.06, 0.04, —0.08 surfaces, respectively. The consistency of the procedure was checked
by repeating it with the roles of andys inverted. Finite-size effects are signaled by violations
of the duality symmetry, that is, in our coordinates, symmetry under reflection in the origin.
Small violations are visible in our figures; we checked that they become smaller when the
lattice sizes are increased. These effects turned out to be much largekinth@region. In
fact we observed that to control them satisfactorily in &he- 0 region lattice sizes as small
asL, = 15, L, = 30 sufficed, while fork < 0 we had to usé.; = 45, L, = 60.

The numerical results confirm the qualitative picture shown in figure 1, and our claim that
the decoupling poinD on the self-dual line marks a change from the coexistence of disorder
andZg order to the coexistence @, andZ3 order. The reduced length of the first-order
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segment ak = 0.04 is consistent with scaling predictions, though we are not close enough to
the pointD to see a complete collapse of data. In conclusion, we have proposed a significant
modification to the previously accepted phase diagram dZgrepin models, and this has been
supported by a detailed numerical study.

We would like to thank John Cardy, Michele Caselle, Eytan Domany, Ferdinando Gliozzi,
Martin Hasenbusch, Klaus Pinn and Jean-Bernard Zuber for useful conversations. This work
was supported in part by a TMR grant of the European Commission, contract reference
ERBFMRXCT960012. PED thanks the UK EPSRC for an Advanced Fellowship and RT
thanks SPhT Saclay for hospitality.
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